CALCULATION OF THFE LIMITING POSITION FOR
A PHASE-CHANGE BOUNDARY

G. D. Babe, E. A. Bondarev, UDC 536.425
and M. A. Kanibolotskii

Leibenson's method has been used with fictitious boundary conditions to obtain an expression
for the limiting position for the boundary to the change of state for a plane-parallel heat flux
when the energy input is restricted.

In many technical problems one has to determine the position of the melting or solidification boundary
for a solid, when the heat input is finite. The limiting position of this boundary is of the main interest in

most cases.

Here we examine the one-dimensional Stefan's problem to show that a modified form of Leibenson's
method can be used [1] to solve this problem without determining the position of the phase boundary as a
function of time.

The following is the system of equations and boundary conditions corresponding to this problem:
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where ty, is the time needed for the boundary X(t) to attain its limiting position Xy,.

The conditions at the boundary x = X(t) are as follows:
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At any time t > t* we have
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Here the first term on the right is the increment in the energy in the zone 0 = x = X(t), while the third
term is the increment in the energy in the zone X(t) = x < <, and the second is the energy consumed in the
phase transition. Fach of these terms does not exceed the total energy Q. In particular,
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In accordance with this we seek the maximum value for the boundary coordinate as a function of Q,
T,, and Tmp’ i,e., mtax [X(t)] = Xy = X (T, Tmp> Q).

Let Xy, attain the boundary at t = ty; then

ax ()
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In accordance with Leibenson's method [1], the temperature in the second zone at this instant is defined by
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which corresponds to the solution to (2) in the region Xy, < x <o with the boundary immobile [see (8)] and
the conditions of (3) and (5).

We have a stationary temperature distribution in the region 0 < x < X, at t = t;; when (8) is applied:

Ty(x, ty) = Ay + Ayx. (10)
With the constants A; and A, we find from conditions (5) and (6) at the boundary; then (10) takes the
form
by (Tmp—T,)
Ty(x) = Tpp— —= 20 (X, — ). 11)
1(6) = Tmp Vel ( ) (

In deriving (9) and (11) we have used all the conditions apart from the conditions at the boundary x = 0
and relationships (1) and (7); these conditions will serve to find Xy, and ty,.
We substitute (9) and (11) into (7), and after integration get

Ly (Tmp—Ty) yo
Q=cp; [(Tmp_ Ty Xy + 2_7» ﬁ%}‘xm }
1 2" m

) o
— 20, ‘/ P (Tnp—To) + LpaX,p (12)
i’
We introduce the symbols
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o = 1/Kg, where K¢ is the thermal activity number of falling ground [1].)
From (13) we put (12} in the form

X A1V Wty (vt @) v By 1 Xy - A0y, — 2X* Y 1ty 0 V'Ey, =0, (14)
whence
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The + sign in front of the root means that the condition Xy, > 0 is met.

If there is no heat flux from the second zone Xy = x <), i.e., if AT = 0, then (12) and (14) or (15)
gives the standard solution
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We now derive the second relationship between Xy, and ty,; for this purpose we need to know the
temperature at x = 0 as a function of time ¢ (0, t). Then we equate the value at t = tyy; to the value Ty from

(11) with x = 0 to get the further relationship between Xy, and tyy,. ‘

Let p; = Py, € = Cy, M = Ag; then at t = ty, the temperature distribution in the entire region (0 =x <)
will be described by a smooth curve, as (6) shows, Then the temperature distribution at t = ty; may be
considered as equivalent to the temperature distribution at the same instant for a uniform and isotropic
medium as provided by an instantaneous heat source of output @y = Q —L0 Xy,

Then [1]
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The condition relating Xy, and ty takes the form
(P(O’ fm) = Tl (0’ 2{m)

We substitute from (1) and (17) in this expression and use (13) to get
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Then with AT = 0 we have
. Xm = Q/Lpz
The same arguments are approximately correct for similar values of pj, ¢i, Aj; a2 similar approach
has been used for other problems in [2],

Fquations (15) and (18) give us a system for X,,, and tyy; we solve these to get the following expres-
sions for X and ty:
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The expressions (19) and (20) for AT = 0 become respectively
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We eliminate the indeterminacy by means of L'HG8pital's rule to get
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From (10) and (20) we see that V1 + @?—4/7 indicates the lower bound to the variation in a:
@ > l/ 21 =052 (22)

This restriction is a natural consequence of our assumptions about the smoothness of the temperature
curve.
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To conclude we consider an example. We envisage the melting of ice with an initial temperature
T, = —5°C. The thermophysical parameters are c; = 1 kcal/kg-deg, oy = 10° kg/m?, A = 0.5 keal/ m-h-
deg, Tmp = 0°C, ¢, = 0.54 kcal/kg-deg, 0, = 900 kg/ms, Ay = 1.9 kcal/m-deg-h, L = 80 kcal/kg, and then
v =14.4 and o = 0.735.

We substitute these values into (19) to get Xp/X = 0.98, where X = Q/Lp, is the limiting coordinate
for the melting front without allowance for the flux from the frozen zone AT = 0),

The result shows that we are correct in our assumptions about the distribution of the thermal energy
at the instant when the boundary reaches its limiting position.

Then one can use (16) in rough calculations, without incurring much error.

NQOQTATION
c is the specific heat of melting;
0 is the density;
A is the thermal conductivity;
A is the thermal diffusivity;
L is the latent melting heat;
T, is the initial temperature;
Tmp is the melting point;

Subscripts
1 and 2  refer to the liquid and solid phases respectively.
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